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In this paper a new time-domain frequency-selective quantifi-
cation algorithm is presented. Frequency-selective quantification
refers to a method that analyzes spectral components in a selected
frequency region, ignoring all the other components outside. The
algorithm, referred to as MeFreS (Metropolis Frequency-Selective),
is based on rank minimization of an opportune Hankel matrix.
The minimization procedure is satisfied by the down-hill sim-
plex method, implemented with the simulated annealing method.
MeFreS does not use any preprocessing step or filter to suppress
nuisance peaks, but the signal model function is directly fitted. In
this manner, neither inherent signal distortions nor estimation bi-
ases to be corrected occur. The algorithm was tested with Monte
Carlo simulations. A comparison with VARPRO and AMARESw
algorithms was carried out. Finally, two samples of known content
from NMR data were quantified. C© 2002 Elsevier Science (USA)

Key Words: frequency selective algorithm; time domain algo-
rithm; quantification in NMR; NMR spectroscopy.
INTRODUCTION

Frequency-Selective (FS) quantification is a method that ap-
plies to spectral components of a selected frequency region, ig-
noring those outside the region of interest (1). Limiting the data
analysis to a narrow region of an NMR spectrum is certainly
a useful advantage. Frequency domain quantification of a Fast-
Fourier Transform (FFT) NMR Free Induction Decay (FID), is
frequency-selective by nature, as various spectral components
are distributed along the frequency axis. However, the selective
analysis in the frequency domain has some heavy limitations.
Spectra require several manipulations (e.g., phase adjustment,
baseline correction), and, for truncated time-domain data, the
FFT needs to be deconvoluted before or during the quantitative
data analysis (2). Both aspects are very limiting in 1D as well
as in multidimensional NMR spectroscopy. Currently used FS
methods can be divided in two principal categories: methods
that can be used in combination with black-box time-domain
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procedures (3, 4) and methods based on model function fit-
ting, which allow to impose prior knowledge (1, 5–7). Among
model function fitting methods, some important examples can
be considered: the ER-filter preprocessing method (7), and sol-
vent suppression methods based on a number of preprocessing
techniques to remove the influence of nuisance peaks (peaks that
are in the same frequency region but are unwanted) prior to a
time-domain model-fitting procedure (8–11). Furthermore, the
use of a minimum-phase FIR filter to suppress nuisance peaks,
followed by the fitting of an adapted time-domain model func-
tion, has been proposed (5).

In this paper, we present a time-domain frequency-selective
quantification algorithm for quantitative analysis of NMR spec-
tra. The MeFreS (Metropolis Frequency Selective) algorithm
works in the time-domain with the advantage of being frequency-
selective. Compared with the above methods, MeFreS does not
use any preprocessing step or filter to suppress nuisance peaks,
but the signal model function is directly fitted. In this manner,
neither inherent signal distortions nor estimation biases to be
corrected occur. Furthermore, when complex spectra such as
those of in vitro cells are considered, the great number of com-
ponents requires a frequency selective algorithm. In fact, the si-
multaneous analysis of too many parameters, for example with
LP–SVD (Linear Prediction–Singular Value Decomposition),
implies solving simultaneously a large set of linear equations,
as well as rooting a high-order polynomial equation. This would
require an unreasonable and often extremely excessive amount
of computational time (4). Furthermore, fitting simultaneously
a great number of components, and then of parameters, could
likely give very large errors. FS and a priori knowledge render
VARPRO (1) and AMARESw (5), two time-domain frequency
selective iterative techniques, to be an efficient solution in the
current state-of-the-art of in vivo NMR spectroscopy. However,
AMARESw and VARPRO are expected to give good results for
relatively well-separated peaks (1, 5). On the contrary, if nui-
sance peaks have a large amplitude or are close, in frequency,
to the peaks of interest, the methods break down. In particular,
this always happens when the assumption of “large” frequency
separation no longer holds (5). Furthermore, as suggested in (1),
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“should unwanted components visibly overlap with the wanted
ones when viewed in the frequency domain, we recommend
that such components be included in the fit.” This means that
often more than one component has to be simultaneously fit-
ted, so reducing the advantage of frequency selectivity. Both
VARPRO and AMARESw are implemented with a time-domain
weighting function “consisting of a quarter wave sinusoid for the
first (and last) twenty samples. . .” (5). This leads “to a loss of
SNR (Signal to Noise Ratio) resulting in an increased variance
of the parameter estimates” (5) and removes peaks with large
linewidth.

The MeFreS algorithm was designed in order to overcome
these limitations certainly relevant in high resolution NMR. For
example, cell spectra contain a great number of overlapping
signals well below the AMARESw and VARPRO breakdown
frequency separation. Furthermore, a large linewidth is often
encountered for many interesting signals that cannot be removed
from the spectra. The MeFreS algorithm should give a solution
to the above limitations. In fact, as no weighting function or filter
is used, no signal is removed. Only one signal at a time can be
fitted and consequently a maximum of four parameters at a time
is fitted. Finally, it appears to be truly frequency selective as it
allows to fit without bias a single signal which is close to large
amplitude or to large linewidth spectral lines.

The MeFreS algorithm is based upon an opportune Hankel
matrix rank minimization. The rank is determined by compar-
ing singular values, obtained by Singular Value Decomposition
(SVD) (12–17), of two opportune Hankel matrices (18, 19).
The level of difference between the singular values is a func-
tion of K continuous parameters (K being the number of the
unknown signals’ parameters which must be fitted), while it
assumes only a small, discrete number of values. Therefore, min-
imization of a discrete value function, defined in a continuous
K -dimensional space (K -dimensional configuration space), is
required. Being the function of a discrete-value function, it re-
quires a multidimensional minimization procedure with only
function evaluations (no derivatives), while the small num-
ber of assumed values needs a random choice of points to
be tested. The first request can be satisfied by the downhill
simplex method (20, 21), while the second can be satisfied
by the method of simulated annealing (22–24). In particular,
for the minimization of the function, we resorted to a sim-
ulated annealing for continuous K -dimensional configuration
space (25), which uses a modification of the downhill sim-
plex method. This procedure, due to Press et al. (25), has been
modified to take into account the discrete value properties of
the function. In order to test the MeFreS algorithm, we car-
ried out Monte Carlo simulations, which demonstrate its abil-
ity to determine one signal in a selected range of frequencies,
for different SNR. Furthermore, we compared MeFreS with
VARPRO and AMARESw applying all algorithms to limit situ-

ations. Finally, we analyzed experimental NMR spectra of sam-
ples at known concentration to test the algorithm ability for
quantitative evaluation.
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RESULTS AND DISCUSSION

The Algorithm

A time-domain NMR FID can be modeled as a sum of com-
plex exponentially decaying sinusoids,

xn =
s=S∑
s=1

As exp[i(φ0 + φs)] exp[(−αs + i2πνs)tn] + en [1]

where S is the number of sinusoids, and As , αs , νs , and φs

(s = 1, 2, . . . , S) are the amplitude, decaying factor (in Hz), fre-
quency (in Hz), and phase (in rad), respectively, of the sth sinu-
soid. The value of φ0 is the zero-order phase, and en is complex
white Gaussian noise. The number of complex data points is N p,
and the discretely sampled time steps are tn = (n + η)	t, n =
0, 1, . . . , N p − 1, with t0 = η	t the begin time, or dead time
of the spectrometer (26, 27). At this point, a FID X (t) and a
signal to be tested X̂ (t) will be considered. They can be written,
respectively, as

xn = exp(iφ0)

[
s=P∑
s=1

Ps exp(iφs) exp[(−αs + i2πνs)tn]

+
s=S∑

s=P+1

As exp(iψs) exp[(−βs + i2πvs)tn]

]
+ en [2]

and

x̂n =
s=P∑
s=1

P̂s exp(i φ̂s) exp[(−α̂s + i2πν̂s)tn], [3]

where n = 0, 1, . . . , N p−1, φ0 is the zero-order phase, en is the
complex Gaussian noise, and tn = (n + η)	t , with t0 = η	t ,
the begin time of the FID; S is the total number of sinusoids,
P ≤ S is the number of signals to be tested (P can be even equal
to 1), Ps , φs , αs , νs (s = 1, 2, . . . , P) are their amplitude, phase,
damping factor, and frequency (in Hz), respectively, while As ,
ψs , βs , and υs (s = P + 1, P + 2, . . . , S) are the amplitude,
phase, damping factor, and frequency (in Hz), respectively, of
the remaining FID sinusoids; P̂s , φ̂s , α̂s , ν̂s (s = 1, 2, . . . , P)
are the amplitude, phase, damping factor, and frequency (in Hz),
respectively, of the signal to be tested. We denote by

δ x̂n = xn − x̂n, [4]

where n = 0, 1, . . . , N p − 1, and the Hankel matrix by

	X (P̂s, φ̂s, α̂s, ν̂s(s = 1, 2, . . . , P))


δ x̂0 δ x̂1 · · · δ x̂M−1

δ x̂1 δ x̂2 · · · δ x̂M



=  ...

...
...

...
δ x̂L−1 δ x̂L · · · δ x̂N−1

 [5]
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with N ≤ N p, L and M chosen greater than S + P and sub-
jected to the constraint N = L + M − 1. For Ps 	= P̂s , φs 	= φ̂s ,
αs 	= α̂s , νs 	= ν̂s (s = 1, 2, . . . , P) these matrices will have a
rank approximated at the most by S + P , because in 	X
(P̂s, φ̂s, α̂s, ν̂s (s = 1, 2, . . . , P)) there will be a number of
independent complex decaying sinusoids equal at the most to
the sum of the number of X and X̂ complex decaying sinusoids.
However, for Ps = P̂s , φs = φ̂s , αs = α̂s , νs = ν̂s (s = 1,

2, . . . , P), the rank of	X (P̂s, φ̂s, α̂s, ν̂s (s = 1, 2, . . . , P)) will
be approximated at the most by S − P , because the P complex
decaying sinusoids in X and X̂ cancel each other out. In order to
obtain the unknown parameters Ps, φs, αs, νs (s = 1, 2, . . . , P),
the algorithm consists in calculating the minimum rank of the
Hankel matrix in Eq. [5] when the parameters vary in a priori
given intervals. The a priori given intervals can be rather easily
obtained by roughly looking at the FFT of the data or by peak
peaking. In fact, algorithm works well also with parameter in-
tervals which are so large that a 100% parameter variation can
occur. At this point two questions need to be considered. First,
the rank of the Hankel matrix in Eq. [5], which is a discrete value
function of the test parameters P̂s, φ̂s, α̂s, ν̂s (s = 1, 2, . . . , P),
must be calculated; second, the minimum of the rank discrete
value function must be found.

Rank Determination

Given the time domain NMR FID, let us consider the (N −
M + 1) × M Hankel matrix

X (N − M +1, M) =




x0 x1 · · · xM−1

x1 x2 · · · xM
...

...
...

...
xN−M xN−M+1 · · · xN−1


 [6]

which consists of N uniformly sampled data points xn , n =
0, 1, . . . , N −1, with (N − M +1) and M chosen greater than S.
The SVD theorem (14–17) states that if X is an arbitrary (N −
M + 1) × M complex valued matrix, then there exist unitary
matrices U ((N − M + 1) × (N − M + 1)), V (M × M) and p
ordered real numbers (p = min((N − M + 1), M)) σ1 ≥ σ2 ≥
· · · ≥ σp > 0, such that

X = U�V †, [7]

where �((N−M+1)×M) is such that � = diag(σ1, σ2, . . . , σp)
and the † denotes Hermitian conjugation. The p numbers are the
so-called singular values of the X matrix. If the X matrix has
rank equal to S, only its first S singular values are greater than
zero, that is, for a S rank X matrix one has

σ1 ≥ σ2 ≥ · · · ≥ σS > 0 [8]
σS+1 = σS+2 = · · · = σp = 0. [9]
ET AL.

An X Hankel data matrix of a noiseless FID, comprising S
complex decaying sinusoids, has rank equal to S (Kronecker’s
theorem (12)) because its elements are points of the FID and
then they are obtained by a linear combination of S independent
signal components. Each X Hankel matrix row (column) is a lin-
ear combination of the same S independent signal components,
and then the X Hankel matrix can have only S independent
rows (columns). The rank of the X Hankel matrix is S. As a
consequence, the X Hankel matrix has only S singular values
different from zero (19). If the FID is affected by noise, its X
Hankel matrix becomes a full rank matrix because the noise de-
stroys the linear dependence of the rows (columns): noise can
be considered as the combination of infinite independent sig-
nals. However, if the SNR is not too low, that is if the signal
amplitudes can be considered greater than noise amplitude, the
signal related are very much greater than the noise related sin-
gular values and the rank of the X Hankel matrix still can be
approximated by S. In particular, in the ordered singular values
there will be a discontinuity between signal related and noise
related singular values: a low limit for the singular values can be
assumed and then an estimation for the rank of the X matrix can
be obtained (19, 29). However, for low SNR, the discontinuity
between signal related and noise related singular values is not so
evident, so that it is not so easy to correctly make an assumption
about the low limit and to obtain a correct rank estimation. In
Fig. 1, the Hankel matrix singular values of a simulated FID
(SNR = 44.3), containing 15 complex exponentially decaying
sinusoids, are plotted. As it can be seen, the noise brings about
an evident discontinuity in the range 10–11, while the rank of
the Hankel matrix should be 15.

In order to calculate the rank matrix in Eq. [6], let us start to
consider the singular value decomposition in Eq. [7]; denoted
by Tr(X ) the X matrix trace, it is easy to show that

Tr(X (N − M + 1, M) ∗ X †(N − M + 1, M)) =
p∑

i=1

σ 2
i , [10]

where N ≤ N p is the number of sampled data points, M the
matrix column number, and N −M+1 is the matrix row number.
Furthermore, by simple calculations, it can be shown that fixed
a given odd N , the Tr(X (N − M + 1, M) ∗ X †(N − M + 1, M))
has the following properties:

1. Tr(X (N − M + 1, M) ∗ X †(N − M + 1, M)) is a growing
M function for M ≤ (N + 1)/2;

2. Tr(X (N − M +1, M)∗ X †(N − M +1, M)) is a decreasing
M function for M ≥ (N + 1)/2;

3. Tr(X (N −M+1, M)∗X †(N −M+1, M)) has a maximum
for M = (N + 1)/2.

For a given odd N , let us consider two M values, M1, M2, with
S < M2 < M1 = (N + 1)/2, being S the number of FID signals,

and let us denote by σM1 , σM2 the matrix singular values X (N −
M1 +1, M1), X (N − M2 +1, M2), respectively. By Eq. [10] and
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FIG. 1. Hankel matrix ordered singular values obtained by a simulated FID
containing 15 complex exponentially decaying sinusoids (SNR = 44.3): (a) the
first 40 ordered singular values; (b) zoom in of the last 35 ordered singular values
in the range 5–40.

by Property 1, it follows that

M1∑
i=1

σ 2
M1i >

M2∑
i=1

σ 2
M2i . [11]

When a free noise FID is considered, both X (N − M1 +
1, M1), X (N − M2 + 1, M2) matrices will have S singular val-
ues, related to signals, different from zero, while the remain-
ing are zero. So, when an FID affected by noise is considered,
one expects that, due to Eq. [11], signal related singular values
σM1i are quite different from σM2i , i = 1, 2, . . . , S, while noise
related singular values are expected to be of the same order
(σM1i � σM2i , i = S + 1, S + 2, . . . , M2). If the absolute differ-
ences between σM1i and σM2i , i = 1, 2, . . . , M2 are considered,
there will be a discontinuity between absolute signal related

singular value differences and noise related singular value dif-
ferences. In order to obtain major differences between signal-
N ALGORITHM 229

related singular values, by Property 3, M1 is chosen equal to
(N + 1)/2, while, by Property 1, M2 must be chosen such that
DNC ≡ M1−M2 � 1 with the condition M2 > S. Furthermore,
the first N data points are chosen because in the first points of
a FID there is the major information about signals. In fact, all
signals contribute to the first FID points, while in the last FID
points only noise or not completely decayed components give
contribute.

In Fig. 2a, the first 40 absolute singular values differences,
relative to the above considered simulated FID, containing
15 complex exponentially decaying sinusoids (SNR = 44.3), are
plotted. Singular values were obtained by SVD of two Hankel
matrices having, respectively, N = 199, M1 = 100, and three dif-
ferent DNC values (DNC = 15, 17, 19). As it can be seen, the
last significant difference about singular values occurs at the
15th singular value, Fig. 2b. Then, the Hankel matrix rank in
Eq. [6], obtained by the simulated FID, is 15. In order to obtain

FIG. 2. Absolute difference of Hankel matrix ordered singular values ob-

tained by a simulated FID containing 15 complex exponentially decaying sinu-
soids (SNR = 44.3): (a) the first 40 absolute singular value differences; (b) zoom
in of the last 35 absolute singular value differences in the range 5–40.
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the unknown parameters, the Hankel matrix rank in Eq. [6] must
be minimized.

To obtain the index of the singular value difference, which
separates signal related from noise related singular value diff-
erences, an automatic procedure was used. In particular, if
δp− p

4 +1, δp− p
4 +2, δp− p

5
, (δ j ≡ σM1 j − σM2 j , j = 1, 2, . . . , M2,

p = M2) were difference values in the last quarter of singular
value differences, certainly all noise related, denoted by

τ = mean
{
δp− p

4 +1, δp− p
4 +2, . . . , δp− p

5

}
[12]

the index required was the last j , with j = 1, 2, . . . , p− p/5−1,
for which the condition (δ j − δ j+1) ≥ 2.5 ∗ τ was satisfied.

However, the correct rank determination is not a crucial point,
because it is sufficient that the used rank determination is such
that it is able to emphasize the passage from a major to a minor
rank. So, the proposed rank determination is not an essential
requirement and better rank determination procedures can only
improve the algorithm.

The Minimization Procedure

The Hankel matrix rank in Eq. [6] is a K continuous para-
meter function (K being the number of the unknown signals’
parameters to be fitted), defined in a continuous K -dimensional
space (K -dimensional configuration space, which assumes only
a little discrete number of values). The discrete-value nature
of the function requires a multidimensional minimization pro-
cedure with only function evaluations (no derivatives), while
a small number of assumed values needs a random choice of
points to be tested. The second request can be satisfied by the
method of simulated annealing (22–24), while the first request
by the downhill simplex method (20, 21). The method of sim-
ulated annealing is a technique suitable for optimization prob-
lems, especially those with the desired global extremum hidden
among many local extrema (25). This numerical method, due to
Metropolis et al. (24), is based on an analogy with thermody-
namics, specifically with the way that metals cool or anneal.

In the Metropolis algorithm, a simulated thermodynamic sys-
tem is considered and it is assumed to change its configuration
from energy E1 to energy E2 with probability p = exp[−(E2 −
E1)/kT ]. In this manner, the system always accepts changes to-
ward lower energy states, while the probability to accept changes
toward greater energy states decreases with temperature lower-
ing. If temperature is lowered sufficiently slowly, the system will
be trapped in a global minimum energy state. In order to gen-
erate random state, the downhill simplex method (20, 21) was
used. A simplex is a geometric figure that has one more vertex
than the dimensions of the space in which it is defined. For ex-
ample, a simplex on a plane is a triangle, the simplex used to fit
one complex exponentially decaying sinusoid, which depends
upon 4 parameters (a four-dimensional space), has 5 vertexes,

and so on. Each vertex represents a state. To obtain the func-
tion minimum, the simplex was modified following the strategy
ET AL.

described (20, 21). The implementation of the Metropolis pro-
cedure consists in adding a positive, logarithmically distributed
random variable, proportional to the temperature T , to the stored
function value associated with every vertex of the simplex, and
in subtracting a similar random variable from the function value
of every new point that is tried as a replacement point (25).
This method always accepts a true downhill step, but some-
times accepts an uphill one, while in the limit T → 0, reduces to
the downhill simplex method. As a T decreasing schedule, the
T = T0(1 − k/K )α , where K is the total number of moves, k is
the cumulative number of moves thus far, and α is a constant,
say 1, 2, or 4 has been implied. The amebsa and amotsa routines
proposed by Press et al. (25) were slightly modified to take into
account the discrete value property of the rank function that had
to be minimized. In particular, two vectors were introduced, in
which all the best points found were memorized; and the going
out condition was obtained controlling that all vector elements
were equal. When the program terminated, the introduced vec-
tor contained all equal minimum found. The vector mean and
standard deviation gave results with their respective errors.

Simulations Testing the Algorithm

In order to test the MeFreS algorithm, both simulated and
experimental 1 H NMR FIDs of samples at known solute con-
centration were used. The simulated FIDs were generated by su-
perposition of complex exponentially decaying sinusoids with
additive Gaussian noise. The program was written in Matlab,
and in order to generate random numbers, the randn Matlab
function was used. Each noise realization FID consisted of the
same 58 complex decaying sinusoids (Fig. 4a). The range of
amplitudes, in arbitrary units, went from 50 to 13500, the de-
caying constant range was (5 − 230) Hz, while the frequency
range was from −1380 Hz to +750 Hz. In order to test the al-
gorithm, seven chosen signals, selected from the 58 complex
exponentially decaying sinusoids, were fitted for different SNR.
The signals were chosen in such a manner that MeFreS ability
in getting over the well known limits of other algorithms could
be tested (Fig. 4b). In particular, we chose two very large signals
(Freq. −762.1 Hz, Decay 210.5 Hz, Ampl. 1837 (black trian-
gle right); Freq. −31.9 Hz, Decay 155.5 Hz, Ampl. 1245 (black
triangle left)) one of which had also a component separated by
less than 3 Hz (Freq. 28.8 Hz, Decay 67.7 Hz, Ampl. 962).
Another component (Freq. 516.6 Hz, Decay 50.2 Hz, Ampl.
1330 (black square)) was chosen having a close component (at
a frequency separation less than 8 Hz) with a greater ampli-
tude (Freq. 507.5 Hz, Decay 65.4 Hz, Ampl. 1623). The fourth
was chosen as a part of a doublet with a J separation of 10 Hz
(Freq. 439.0 Hz, Decay 30.7 Hz, Ampl. 1633 (black triangle)).
The fifth was chosen to be a very great amplitude signal
(Freq. 235.8 Hz, Decay 26.2, Ampl. 6026 (black lozenge)) with
very big near signals (amplitude greater then 3000 and at a

frequency separation less then 5 Hz). The last two were al-
ways chosen in such a manner that they had near signals at a
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frequency separation less then 7 Hz, but above all with a great
number of near components (8 components in the range of 80 Hz)
(Freq. 389.7 Hz, Decay 41.7, Ampl. 1716 (bullet); Freq. 306.7
Hz, Decay 17.8, Ampl. 884 (black triangle down)). These com-
ponents were fitted, one by one and at different signal to noise
ratio.

For each noise realization, the first 256 FID data points
were used. Furthermore, for low SNR an exponential apodiza-
tion function (broadening constant range (0.6–8.0) Hz) was ap-
plied (30). In Fig. 4a, together with the FFT of a noise real-
ization simulated FID (SNR = 23.3), we report the FFT of the
above cited 7 complex exponentially decaying sinusoids, fit-
ted by the MeFreS algorithm one by one, and chosen among
the 58 complex exponentially decaying sinusoids that formed
the FID. The above 7 complex exponentially decaying sinu-
soids are compared, in Fig. 4b, with the FFT of the computed
complex exponentially decaying sinusoids as fitted by MeFreS
to the above total noisy FID (SNR = 23.3). As it can be seen
(Fig. 4b), they are very similar, and the estimated frequen-
cies, decays and amplitudes (filled symbols in Figs. 3a–3c)
well correspond to computed data (empty symbols in Figs. 3a–
3c) at different signal to noise ratio. The estimated frequen-
cies, decays and amplitudes out of range in Figs. 3a–3c had a
maximum bias less than 3% and were, in the error, consistent
with the true parameter values. In order to compare MeFreS
with both AMARESw and VARPRO, the same seven signals
were fitted by AMARESw and VARPRO at different signal to
noise ratio. In particular, the MRUI version 99.2 software pack-
age (http://www.mrui.uab.es/mrui/mrui homePage.shtml) was
used.

In Fig. 5, results about the fitted amplitudes of the above
cited 7 signals at SNR = 14.0 ± 4.0 are reported. We applied
AMARESw, VARPRO, and MeFreS with the only a priori con-
dition that phases were put equal to zero. To reduce the bias
for AMARESw and VARPRO, the fit was extended to com-
ponents in the 80 Hz range around the component of interest
(generally the fit of 10, 12 components was necessary). Initial
data for AMARESw and VARPRO were obtained by peak-
peaking the region of interest of the frequency spectra.
Simulations confirm the known AMARESw and VARPRO lim-
itations, Fig. 5. As expected AMARESw and VARPRO am-
plitude estimation of the very large linewidth signals (Freq.
−762.1 Hz, Decay 210.5 Hz, Ampl. 1837 (black triangle, right);
Freq. −31.9 Hz, Decay 155.5 Hz, Ampl. 1245 (black triangle,
left)) result very biased, while MeFreS estimation is unbi-
ased. AMARESw and VARPRO give biased estimation also
for the very large amplitude signal (Freq. 235.8 Hz, Decay
26.2, Ampl. 6026 (black lozenge)) very close to large amplitude
signals (amplitudes greater than 3000 and at a frequency separa-
tion less than 5 Hz). As expected, also the signal (Freq. 389.7 Hz,
Decay 41.7, Ampl. 1716 (bullet)), close to a great number of
signals (8 components in the range of 80 Hz) and for which

was necessary to fit simultaneously a great number of compo-
nents, was estimated by AMARESw and VARPRO with a great
N ALGORITHM 231
FIG. 3. Estimated (filled symbols) and true (empty symbols) spectral pa-
rameters of the seven chosen signals at different SNR. (a) Frequencies; (b)
decays; (c) amplitudes. Each symbol identifies a signal as indicated in Fig. 4b.
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FIG. 4. (a) Simulated spectrum obtained from a simulated FID containing
58 complex exponentially decaying sinusoids (SNR = 23.3). Seven chosen sig-
nals fitted in the time domain by the MeFreS algorithm are also shown (dotted
trace). (b) Simulated spectrum obtained from the seven chosen complex expo-
nentially decaying sinusoids. Each line is labelled with a filled symbol. Also
reported are fitted signals (dotted trace) in the time domain by the MeFreS
algorithm.

bias. In both situations, MeFreS results unbiased. Finally, for
signals which are expected to be well fitted by AMARESw and
VARPRO (Freq. 516.6 Hz, Decay 50.2 Hz, Ampl. 1330 (black
square); Freq. 439.0 Hz, Decay 30.7 Hz, Ampl. 1633 (black tri-
angle); Freq. 306.7 Hz, Decay 17.8, Ampl. 884 (black triangle
down)), all algorithms give comparable results. The same con-
siderations are true for decays estimation (Fig. 6).

Spectra Quantification

In order to validate the MeFreS algorithm, two samples

of known concentration were considered. In particular, the
first sample (Sample A) contained (14 ± 1) µg of toluene
ET AL.

FIG. 5. True (filled symbols) and estimated (empty symbols) amplitudes
of the seven chosen signals at SNR 14.0: (�) True amplitudes; (�) MeFreS
estimated amplitudes; (�) AMARESw estimated amplitudes; (�) VARPRO
estimated amplitudes.

(MW = 92.14Da) dissolved in (520 ± 2) µl of deuterated chlo-
roform (CDCl3, 99.96% deuterium content, ρ = 1.48 g/ml,
MW = 119.38Da). The toluene concentration (Ctoluene) was
(0.3 ± 0.1) mmol/l, and CDCl3 concentration (CCDCl3 ) was
(12397.4 ± 182.2) mmol/l. Experimental spectra were obtained
by using a Bruker DRX-500 spectrometer operating at 500 MHz.
The FIDs were acquired with a 90 pulse and 64 transients of 2048
data points over ±3255.2 Hz. A reduced number of data points
was used in order to avoid a complete decay of the FIDs to
zero. Using the first 349 FID data points, the MeFreS algorithm
was used to fit one by one the toluene (−1147.3 ± 0.1) Hz and
CDCl3 (1303.8 ± 0.2) Hz signals (Table 1).
FIG. 6. True (filled symbols) and estimated (empty symbols) decays of the
seven chosen signals at SNR 14.0. (�) True decays; (�) MeFreS estimated
decays; (�) AMARESw estimated decays; (�) VARPRO estimated decays.
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TABLE 1
Sample A Fitted Signal Parameters

Frequency (Hz) Amplitude (a.u.) Decay (Hz) Phase (rad)

−1147.3 ± 0.1 1246 ± 88 1.69 ± 0.06 −3.6 ± 0.1
1303.8 ± 0.2 6663 ± 431 1.24 ± 0.06 −1.03 ± 0.07

In Fig. 7, the FFT spectrum of Sample A is reported with-
out any manipulation. Also reported is the FFT of the complex
exponentially decaying sinusoids obtained with the MeFreS al-
gorithm, one by one and without any manipulation (dashed and
dotted traces). As it can be seen, fitted signals reproduce very
well the experimental ones.

This is better appreciated in Figs. 8a and 8b that are expansions
of the deuterated chloroform and toluene signals, respectively.
Being the area under a Lorentzian line, obtained by FFT of a sin-
gle complex exponentially decaying sinusoid, equal to one half
of the amplitude, by using the results of Table 1 with a CDCl3 ref-
erence concentration of (12397.4 ± 182.2) mmol/l, we obtained
for toluene Ctoluene = (0.31±0.05) mmol/l, which well reprodu-
ces the experimental toluene concentration (0.3 ± 0.1) mmol/l.
It is important to observe that such a result has been obtained
by applying the MeFreS algorithm to a FID that has not fully
decayed. In fact, in this case quantification in the frequency do-
main by using the usual integration routine is hampered by the
presence of wiggles around each peak, which distort the base-
line, thus causing a large error. In the Frequency Domain (FD),
from peak integration we obtained a completely wrong con-
centration for toluene FDCtoluene = (0.53 ± 0.05) mmol/l. The
second sample (Sample B) contained the tripeptide thyrotropin
releasing hormone (TRH, Calbiochem, MW = 363.4Da), which

FIG. 7. Spectrum obtained by FFT of the Sample A. Neither phase ad-

justment nor baseline correction were applied (SNR = 285). Dashed and dotted
traces refer to fitted toluene and deuterated chloroform respectively, as obtained
with MeFreS algorithm.
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FIG. 8. (a) Zoom in around the deuterated chloroform of Fig. 7. In dot
style, FFT of the fitted deuterated chloroform complex exponentially decaying
sinusoid. (b) Zoom in around toluene of Fig. 7. In dot style, FFT of the fitted
toluene complex exponentially decaying sinusoid.

controls the secretion of the thyroid stimulating hormone from
the pituitary gland; 4.5 mg of TRH (pyrGlu-His-Pro) were dis-
solved in 400 µl of deuterated methanol (CD3OD, 99.96%),
and contained (10 ± 1) µl of a sodium trimethylsilyl[2,2,3,3-
d4]propionate solution (TSP, 10 µmol/l), used as spectral ref-
erence. The proton spectrum of TRH was acquired on a Bruker
DPX spectrometer operating at 300 MHz. The FIDs were

TABLE 2
Sample B Fitted Signal Parameters

Frequency (Hz) Amplitude (a.u.) Decay (Hz) Phase (rad)
−1947.30 ± 0.04 1807 ± 80 0.93 ± 0.02 −1.2 ± 0.2
143.4 ± 0.2 19905 ± 974 3.2 ± 0.4 0.2 ± 0.1
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FIG. 9. Spectrum obtained by FFT of the FID of Sample B. Neither phase
adjustment nor baseline correction was applied (SNR = 336).

accumulated with a 90 pulse and 64 scans of 8192 data points
over a spectral window of ±2097.3 Hz. The frequency spec-
trum presents two isolated singlets in the aromatic region, cor-
responding to the His Cω1 and the Cδ2 protons. Using the
first 256 FID data points, the MeFreS algorithm was used
to fit, one by one, TSP (−1947.30 ± 0.04) Hz and peptide
His Cδ2 (143.4 ± 0.2) Hz signals (Table 2). Figure 9 reports
the FFT spectrum of Sample B obtained without any ma-
nipulation, together with the FFT of the complex exponen-
tially decaying sinusoids obtained by the MeFreS algorithm,
one by one and without any manipulation (TRH, dotted line;
TSP, dashed line). By using the results in Table 2, using
a reference concentration for TSP of (0.24 ± 0.02) mmol/l,
we obtained for TRH a concentration of (31.7 ± 5.6) mmol/l
that well reproduces the experimental TRH concentration
of (30.29 ± 0.02) mmol/l, while the concentration obtained
from the integration in the frequency domain is (38.7 ±
3.6) mmol/l.

CONCLUSIONS

In this paper we have described MeFreS, a new algorithm
for frequency-selective quantification of NMR parameters in
the time domain. The results are very interesting as MeFreS
avoids many of the drawbacks of selective analysis in the fre-
quency domain. In particular, MeFreS works in the time domain,
thus avoiding the usual manipulation of the FID (function mul-
tiplication, FFT, phase correction, baseline correction, etc.) for
analysis in the frequency domain. The MeFreS algorithm does
not use preprocessing steps and filter of nuisance peaks. It has
the advantage of avoiding inherent distortions and estimation

biases to be corrected. It correctly can fit a single component
at a time, with a maximum of four parameters. It only uses
ET AL.

rather weak prior knowledge assumptions obtainable at a glance
from the FFT spectrum, or by a simple peak peaking. Further-
more, the prior knowledge of the chosen variation range to be
assigned to each parameter can be as weak as 100%. Only a
few minutes (from 3 to 7) for signal estimation were neces-
sary on a 300 MHz PC. In order to verify its ability in avoid-
ing the main drawbacks of other FS time-domain algorithms
currently used, a comparison with AMARESw and VARPRO
algorithms were made (MRUI, version 99.2 software package
(http://www.mrui.uab.es/mrui/mrui homePage.shtml)). Simu-
lations confirm that MeFreS is able to correctly identify spec-
tral parameters also in those cases when AMARESw and
VARPRO are expected to fail. In particular, signals from high-
resolution NMR simulated cell-type FID were successfully
analyzed even in the presence of strong frequency-domain
overlapping peaks, below the “allowed” frequency separation
range. Large linewidth does not prevent MeFreS analysis, while
AMARESw and VARPRO do not allow fitting of such lines,
which are considered nuisance peaks (8–11). In order to fit a
signal, MeFreS selects its single frequency and fits only that
signal, while AMARESw and VARPRO need to fit all signals
that fall in the range below the allowed frequency separation
range. In addition, we have shown that MeFreS is able to de-
termine the correct concentration of solutes in conditions very
often encountered in NMR spectroscopy. It was able to find the
correct toluene concentration (Sample A) in the presence of a
truncated FID. It is well known that the FFT of a step function
introduces wiggles in the frequency-domain spectrum, which
strongly affect the signal intensity. This appears to be particu-
larly important in fast acquisition (fast decomposing molecules
or multidimensional NMR). Furthermore, the algorithm is able
to correctly select the signal even in the presence of overlap,
as in the case of His Cδ2 singlet (Sample B). Most impor-
tantly, The absence of filters and preprocessing steps makes
the MeFreS algorithm naturally and directly extensible to mul-
tidimensional NMR experiments, on which we are currently
working.

APPENDIX A

In this appendix the Hankel matrix trace properties (Properties
1, 2, and 3 from Results and Discussion) are demonstrated. By
simple calculations, it can be shown that, for N odd, M ≤ (N +
1)/2,

Tr(X (N − M + 1, M) ∗ X †(N − M + 1, M))

=
M−1∑
k=0

(k + 1) ∗ |xk |2 +
N−M∑
k=M

M ∗ |xk |2

+
N−1∑

(N − k) ∗ |xk |2 [A.1]
while, for M ≥ (N + 1)/2,
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Tr(X (N − M + 1, M) ∗ X †(N − M + 1, M))

=
N−M−1∑

k=0

(k + 1) ∗ |xk |2 +
M−1∑

k=N−M

(N − M + 1)

∗ |xk |2 +
N−1∑
k=M

(N − k) ∗ |xk |2. [A.2]

By Eq. [A.1], it follows that, for M ≤ (N + 1)/2,

Tr(X (N − (M + 1) + 1, (M + 1)) ∗ X †(N − (M + 1)

+ 1, (M + 1))) − Tr(X (N − M + 1, M) ∗ X †

× (N − M + 1, M))

=
N−M−1∑

k=M

|xk |2 ≥ 0, [A.3]

that is, for M ≤ (N + 1)/2, Tr(X (N − M + 1, M) ∗ X †(N −
M + 1, M)) is an M increasing function (Property 1). In the
same way, By Eq. [A.2], it follows that, for M ≥ (N + 1)/2,

Tr(X (N − M + 1, M) ∗ X †(N − M + 1, M))

− Tr(X (N − (M + 1) + 1, (M + 1))

∗ X †(N − (M + 1) + 1, (M + 1)))

=
M−1∑

k=N−M

|xk |2 ≥ 0, [A.4]

that is, for M ≥ (N +1)/2, Tr(X (N − M +1, M)∗ X †(N − M +
1, M)) is an M decreasing function (Property 2). Property 3 de-
scends immediately, by maximum definition, from Properties 1
and 2.
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